Chapitre 2 : Polynômes - Feuille d'exercices n°2

Exercice 1

Dans chacun des cas suivants, déterminer les réels a, b, c tels que

- 1. Pour tout $x \in \mathbb{R}$, $a(x-1)(x-2) + bx(x-2) + cx(x-1) = (x+1)^2$
- 2. Pour tout $x \in \mathbb{R} \setminus \{-2; -1; 0\}, \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2} = \frac{1}{x(x+1)(x+2)}$

Exercice 2

Montrer que le polynôme $P(x) = x^4 + 4x^3 + 12x^2 + 16x + 16$ est le carré d'un polynôme Q(x) que l'on déterminera.

Exercice 3 Soit $P(x) = x^3 + 3x^2 - 13x - 15$.

- 1) Déterminer une racine évidente de P.
- 2) En déduire une factorisation de P en un produit de polynômes de degré 1.

Exercice 4 Soit $P(x) = x^3 - 5x^2 + 16$

- 1) Calculer P(4).
- 2) En déduire une factorisation de P.

Exercice 5

Factoriser rapidement et sans utiliser de discriminant les polynômes :

a)
$$x^2 + 4x + 3$$
 b) $2x^2 - 3x - 2$ c) $4x^2 - 3x$ d) $-3x^2 + 5x - 2$

Exercice 6

Factoriser le plus possible dans $\mathbb{R}[X]$, le polynôme suivant : $x^4 - 9x^2 + 4x + 12$

Exercice 7

Résoudre dans IR l'inéquation suivante : $x^3 + 3x^2 + 5x + 3 > 0$